Discovery of novel ways to halt the spread of antibiotic resistance



A cost-effectiveness analysis conducted by researchers at Stanford University Hospital in Calif., shows that an initial double-balloon enteroscopy (DBE) is a cost-effective approach for patients with obscure gastrointestinal (GI) bleeding. However, capsule-directed DBE (which is when the findings from an initial small bowel capsule endoscopy exam are used to guide the DBE procedure) may be

Full Post: Double-balloon enteroscopy offers cost-effective approach for obscure GI bleeding

Scientists have identified the structure of a key component of the bacteria behind such diseases as whooping cough, peptic stomach ulcers and Legionnaires’ disease.

The research, funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council (BBSRC), sheds light on how antibiotic resistance genes spread from one bacterium to another. The research may help scientists develop novel treatments for these diseases and novel ways to curtail the spread of antibiotic resistance.

Antibiotic resistance spreads when genetic material is exchanged between two bacteria, one of which has mutated to be resistant to the drugs. This exchange is facilitated by a multi-component device known as a type IV secretion system, which acts to transport antibiotic resistance genes from within one cell, through its membrane and into a neighbouring cell.

Type IV secretion systems also play an essential role in transporting toxins or proteins from within bacteria into the cells of the body, causing diseases. Examples of Gram-negative bacterial pathogens using such a device are Helicobacter pylori (which causes peptic ulcers), Legionella pneumophila (which causes Legionnaires’ disease), and Bordetella pertussis (which causes whooping cough).

Now, in a paper published in the journal Science , scientists from the Institute of Structural and Molecular Biology (ISMB) at Birkbeck, University of London, and UCL (University College London) describe the structure of the core complex of a type IV secretion system, viewed using cryoelectron microscopy (a form of electron microscopy where the sample is studied at very low temperatures).

“Type IV secretion systems play key roles in secreting toxins which give certain bacteria their disease-causing properties and, importantly, are also directly involved in the spread of antibiotic resistance,” says Professor Gabriel Waksman, Director of the ISMB and lead author of the study. “This is why they have become obvious targets in the vast effort required to fight infectious diseases caused by bacteria.”

Gram-negative bacteria have a double membrane. At the core of the type IV secretion system is a double-walled chamber which spans the two membranes and opens at one side. Dr Waksman believes this chamber may offer a new pathway for targeting these bacteria.

“If we can inhibit the secretion systems that mediate transfer of antibiotic resistance genes from one bacterial pathogen to another, we could potentially prevent the spread of antibiotic resistance genes,” he says. “For those pathogens that use type IV secretion system for secretion of toxins, the system can be targeted directly for inhibition. In both cases, this would have a considerable impact on public health.”

Type IV secretion systems were first discovered in Agrobacterium tumefaciens, which uses the system to transfer tumour-inducing DNA into plants, causing “crown gall”, which can be devastating to crops such as grape vines, sugar beet and rhubarb. However, crop scientists have been able to successfully exploit this transfer system as a way of introducing new genes into industrial crops, conferring herbicide-resistance and resistance to pathogens.

http://www.wellcome.ac.uk/

Link




It’s as simple as A, T, G, C. Northwestern University scientists have exploited the Watson-Crick base pairing of DNA to provide a defensive tool that could be used to fight the spread of antibiotic resistance in bacteria — one of the world’s most pressing public health problems. The resistant nasty pathogens cause thousands of deaths

Full Post: Blocking mechanism found for antibiotic resistance in bacteria



The recent emergence of multidrug resistance (MDR) in Acinetobacter baumannii, a bacteria that causes infections primarily among seriously ill patients in the intensive care unit who may have reduced immune systems, has raised concern in health care settings worldwide. When comparing the genome sequence of three MDR A. baumannii isolates and three drug-susceptible A. baumannii

Full Post: Genes involved in antibiotic resistance vary within a species



Scientists have discovered a new way for bacteria to transfer toxic genes to unrelated bacterial species, a finding that raises the unsettling possibility that bacterial swapping of toxins and other disease-aiding factors may be more common than previously imagined. In a laboratory experiment, the scientists from NYU School of Medicine discovered that Staphylococcus aureus, a

Full Post: Discovery of new way for bacteria to transfer toxic genes to unrelated bacterial species



When bacterial infections cause us to get really sick, the only way to get better is to go to the doctor. With the help of antibiotics, we can start to recover quickly. One such antibiotic is Augmentin which belongs to the penicillin family of drugs. A bacterial infection is different to a viral infection, therefore the

Full Post: Antibiotic Augmentin



A new study finds that mountain gorillas are at increased risk of acquiring gastrointestinal microbes, such as Escherichia Coli, from humans. The study, published in Conservation Biology, examines the exchange of digestive system bacteria between humans, mountain gorillas and domestic animals with overlapping habitats. The findings show the presence of identical, clinically-resistant bacteria, in gorillas,

Full Post: Gorillas may be at increased risk of pathogen exchange with humans