Engineered virus targets and kills apparent cancer stem cells in neuroblastoma



If your doctor prescribes Cialis to treat your erectile dysfunction, you will be glad to know that this drug has been approved by the FDA. Erectile dysfunction is an extremely common problem. In fact there are close to 30 million men, in the USA alone, who have this condition. As you know, this occurs when

Full Post: Cialis will be safe for you

After identifying an apparent population of cancer stem cells for neuroblastoma, researchers successfully used a reprogrammed herpes virus to block tumor formation in mice by targeting and killing the cells.

Published online Jan. 21 by PLoS (Public Library of Science) One, the study led by Cincinnati Children’s Hospital Medical Center adds to a growing body of evidence suggesting early stage cancer precursor cells with stem-cell-like properties may explain how some cancers form, are treatment resistant and prone to relapse. The study also underscores the increasing potential of targeted biological therapies to help people with stubborn cancers like neuroblastoma, which often recur and metastasize, said Timothy Cripe, M.D., Ph.D., senior investigator and a physician/researcher in the division of Hematology/Oncology at Cincinnati Children’s.

“The main finding of our study is that pediatric neuroblastomas seem to have a population of cells with stem-cell characteristics that we may need to target for therapy,” Dr. Cripe said. “We also show that one promising approach for targeted treatment is biological therapy, such as an engineered oncolytic virus that seeks out and kills progenitor cells that could be the seeds of cancers.”

Neuroblastoma’s solid tumors usually attack the sympathetic nervous system, part of the body’s autopilot mechanism that controls vital organ function and instinctive responses, like “fight or flight.” The disease can be thrown into remission by chemotherapy, radiation or surgery, but it’s also known for treatment resistance and a high rate of relapse and death. In patients with high-risk forms of the disease, long-term survival rates are less than 50 percent. The reasons for neuroblastoma’s tendency to relapse and spread still need to be proven, said Dr. Cripe, also professor of Pediatrics at the University of Cincinnati College of Medicine.

To further explore the cancer stem cell theory, the research team took human neuroblastoma cells and grew them in laboratory cultures. The cultures contained cells exhibiting biological properties of neural stem cells - which are specific to the nervous system and grow to form a variety of nerve tissue. The cultures generated cell colonies that acted like stem cells in the way they divided, grew and were capable of diverse, or multi-lineage, differentiation. Analysis showed the cells also carried known biological markers for nerve stem cells, such as the proteins CD133 and nestin.

The cells advanced into tumor-like cell spheres and were tumorigenic, meaning they had the potential to form tumors. Cells derived from these tumorspheres were relatively resistant to the chemotherapy agent doxorubicin, similar to that seen with some treatment-resistant neuroblastomas. Researchers also noted cells from the tumorspheres carried a gene (MYCN) that is found at amplified levels in aggressive forms of neuroblastoma.

Because neural stem cells and neuroblastoma cells both carry the protein nestin, Dr. Cripe and his colleagues tested the effect of an oncolytic herpes simplex virus called rQNestin34.5 on cells. Developed by cancer researchers Ohio State University, rQNestin34.5 carries a molecular promoter for nestin, which causes it to seek out the protein and cancerous, or precancerous, cells where nestin resides. The virus is genetically programmed to grow inside and be toxic to cancer cells, while leaving healthy tissues alone.

The tumorigenic cells were infected with rQNestin34.5 and then injected into mice to see if neuroblastoma tumors would form. Tumors did not form in any of the mice over a 60-day observation period, leading the researchers to report that rQNestin34.5 “abolished tumor growth” by attacking apparent tumor-initiating cells.

In comparison experiments for control, researchers also infected tumorigenic cells with another oncolytic herpes virus called rQLuc, which does not target cells that contain the nestin protein. Next to rQNestin34.5, rQLuc showed only moderate success, with all treated mice having tumor formation within 40 days. In mice where cells were treated only with saline, all animals had tumors form within 30 days.

Although a promising step forward, Dr. Cripe said the study’s main limitation is that precancerous cells were infected with the oncolytic virus in a laboratory culture before being injected into mice.

“Targeting and hitting the cells after they are already in the mice will be another matter,” he said.

The research team also nurtured the stem-cell like tumorigenic cultures over an extended period of time in the laboratory. In the next research phase, the team will try to verify results in the current study by seeing if they can detect the presence of cancer stem cells in primary neuroblastoma tumor cells from patients.

Dr. Cripe cautioned much more research is needed before determining whether rQNestin34.5 would be efficacious in treating neuroblastoma patients in a clinical setting.

http://www.cincinnatichildrens.org/

Link




One of the most promising new ideas about the causes of cancer, known as the cancer stem-cell model, must be reassessed because it is based largely on evidence from a laboratory test that is surprisingly flawed when applied to some cancers, University of Michigan researchers have concluded. By upgrading the lab test, the U-M scientists

Full Post: Cancer stem-cell model tested by University of Michigan researchers



The compound, alpha-difluoromethylornithine or DFMO, targets the activity of a specific enzyme and, even in very limited doses, is effective in protecting against the malignancy in animal models. The study was published in the January 15, 2009 issue of the journal, Cancer Research (Volume 69, Issue 2). “The drug, which was developed as a cancer

Full Post: Researchers find novel use for old compound in cancer treatment



A new study reveals critical molecular mechanisms associated with the development and progression of human neuroblastoma, the most common cancer in young children. The research, published by Cell Press in the January 6th issue of the journal Cancer Cell, may lead to development of future strategies for treatment of this aggressive and unpredictable cancer. Neuroblastoma

Full Post: New insight into critical molecular mechanisms involved in aggressive childhood cancer



Researchers at the Salk Institute for Biological Studies have developed a versatile mouse model of glioblastoma-the most common and deadly brain cancer in humans-that closely resembles the development and progression of human brain tumors that arise naturally. “Mouse models of human cancer have taught us a great deal about the basic principles of cancer biology,”

Full Post: A novel glioblastoma mouse model developed



Scientists have identified a genetic signature that is remarkably effective at predicting the prognosis of an aggressive liver cancer in children. The research, published by Cell Press in the December issue of the journal Cancer Cell, may lead to better treatments for pediatric liver cancers. Hepatoblastoma (HB), the most common liver cancer in children, is

Full Post: Genetic signature may lead to better treatments for pediatric liver cancers