New approach to stopping germs



What parents make available for their children to eat can contribute to an obesity-prone home food environment, according to researchers at Kansas State University. The researchers say that when it comes to childhood obesity, a multitude of factors affect the food children consume in the home. “Many people view healthful eating and physical activity as

Full Post: Researchers create model of different components that contribute to an obesity-prone home food environment

Keeping germs from cooperating can delay the evolution of drug resistance more effectively than killing germs one by one with traditional drugs such as antibiotics, according to new research from The University of Arizona in Tucson.

John W. Pepper proposes a new strategy in the arms race between humans and germs– targeting the teamwork within gangs of germs.

Most drugs used to fight infections kill the vulnerable disease-causing organisms, or pathogens, but the resistant ones survive. The next generation will all carry the resistance to the drug.

“We know that the pathogen is causing the disease. The obvious solution is to kill the pathogen. It makes perfect sense, and that’s what we’ve always done,” said Pepper, a UA assistant professor of ecology and evolutionary biology. “But there’s one big flaw with that — and that is the evolution of resistance.”

Pepper’s mathematical models show it takes longer for a group of cells to develop resistance to drugs that attack the teamwork factors than for individual cells to become resistant to a traditional antibiotic.

He advocates developing drugs that attack the pathogens’ methods and resources for cooperation. Pepper said once the teamwork is disrupted, the immune system can combat any remaining infection.

He said this new approach will work against “old enemies and some new ones” that are becoming drug resistant, including methicillin-resistant Staphylococcus aureus bacteria (MRSA), HIV, malaria, tuberculosis, avian influenza and cancer.

Pepper is also a member of UA’s BIO5 Institute and an external professor at the Sante Fe Institute in New Mexico. His paper, “Defeating Pathogen Drug Resistance: Guidance from Evolutionary Theory,” is scheduled for publication in the December issue of the journal Evolution .

Pepper began investigating cooperation by studying parrots and dolphins. Now he studies cooperation among individual cells.

Most cells such as a bacterium produce materials that ensure their own survival and maintain infections by helping both themselves and their fellows.

For pathogens, there’s strength in numbers. As they form groups, they become a greater threat.

For example, MRSA produce more than 50 resources essential for the group.

Where others may see an unconquerable defense, Pepper sees 50 opportunities.

The number and type of materials produced within a gang of pathogens varies. However, if one material is eliminated, none of the cells will survive. Neither will the infection.

He is currently collaborating with cancer biologists to attack chemicals that allow cancer cells to gang up on normal cells.

One type of chemical, the angiogenesis factor, is secreted by cancerous cells to stimulate the growth of blood vessels into tumors. Blood vessels carry oxygen and nutrients to the cells in the tumor.

Some doctors currently use angiogenesis blockers, such as the anti-cancer drug Avastin, to inhibit the signal. Without blood vessels, tumors suffocate and starve.

As opposed to toxic drugs that poison and kill cancer cells, Pepper said these new types of anti-cancer drugs will stay potent longer.

“The basic point I’m making is in order to save the patient, we don’t have to have a drug that kills the cancer cells,” Pepper said.

If drug development continues to focus on killing individual cells, he said, “We’re always going to keep running on the same treadmill.

“We’re going to be in this situation where we desperately need a new antibiotic by tomorrow, or maybe by yesterday,” Pepper said. “That’s not going to be a temporary emergency — it’s going to be a permanent emergency, unless we take a new approach.”

http://www.arizona.edu/

Link




Rates of antibiotic-resistant head and neck infections increased in pediatric patients nationwide between 2001 and 2006, according to a report in the January issue of Archives of Otolaryngology-Head & Neck Surgery. Before the 1980s, infections with strains of the bacteria Staphylococcus aureus resistant to the antibiotic methicillin (methicillin-resistant Staphylococcus aureus, or MRSA) were most often

Full Post: MRSA head and neck infections increase among children



Infectious disease experts warn that new drugs are urgently needed to treat six drug-resistant bacteria that cause most hospital infections and increasingly escape the effects of antibiotics. The ESKAPE pathogens - as these six bad bugs have been dubbed - are still on the loose more than four years after the Infectious Diseases Society of

Full Post: Six bad bugs increasingly escaping effects of antibiotics



Researchers at the Texas A&M Health Science Center Institute of Biosciences and Technology, and the University of Edinburgh have uncovered how a bacterial pathogen interacts with the blood coagulation protein fibrinogen to cause methicillin-resistant Staphylococcus aureus (MRSA) infections, a finding that could aid in developing therapeutics against the potentially deadly disease. Their work appears November

Full Post: Novel target for therapeutics against Staphylococcus aureus



Swissmedic, the Swiss agency for therapeutic products, has approved Zevtera (ceftobiprole medocaril) for the treatment of complicated skin and soft tissue infections, including diabetic foot infections which have not spread to the bone. Ceftobiprole is licensed from and co-developed with Basilea Pharmaceutica Ltd. Janssen-Cilag will market ceftobiprole in Switzerland under the trade name Zevtera.

Full Post: Swiss approval for Zevtera in treatment of complicated skin and soft tissue infections



An enzyme that lives in Methicillin-resistant Staphylococcus aureus (MRSA) and helps the dangerous bacterium to grow and spread infection through the human body has been visualised for the first time, according to a study out today in Proceedings of the National Academy of Sciences (PNAS). Now, armed with detailed information about the structure of

Full Post: MRSA’s weak point visualised by scientists