New technique provides closer look at DNA and mRNA



A dead chicken on a backyard farm in northern Thailand has signalled another outbreak of bird flu and comes six months after the country declared itself free of the disease. According to Thailand’s Ministry of Agriculture, the H5N1 virus was found in the bird on a native-chicken farm in the northern province of Sukhothai and

Full Post: Another outbreak of bird flu in Thailand has authorities on high alert

In a study in the advance online edition of Nature Structural and Molecular Biology, researchers from Albert Einstein College of Medicine describe a technique for looking more precisely at a fundamental step of a cell’s life - a gene, DNA, being read into a message, mRNA.

The technique could provide a window into the process by which genes are switched on inappropriately, causing disease.

The new technique provides a detailed look into processes that until now were proven but never visualized. The more detailed view of DNA being made into RNA in a single cell will help answer questions about how much of a gene is made over time and how much that level varies from cell to cell. Insight into how genes work at a more precise level, ultimately advances understanding of disease mechanisms that trigger cancer, for example, which arise when genes no longer work at their correct capacity or time.

“The classic textbook cartoon illustration of a single strand of DNA with little mRNA pieces coming off it can now be shown with real photographs,” explained Daniel Zenklusen, Ph.D., an Einstein post-doctoral fellow and first author of the study. The technique was developed in the laboratory of Robert Singer, Ph.D., co-chair and professor of anatomy and structural biology at Einstein.

The new technology is a powerful refinement of fluorescent in-situ hybridization (FISH), developed in Dr. Singer’s laboratory more than 26 years ago. FISH is now a widely used research tool to study gene activation; that is how much a gene has been “turned on” in groups of cells. FISH is also used in genetic counseling to detect the presence of gene features that diagnose conditions including Down’s syndrome or Prader-Willi syndrome.

Advances in fluorescence, microscopy and data analysis enabled the more powerful FISH application described in the paper. Until this work, FISH could only be used to look at genes or their messages that are present at very high levels and only in tissues, not at the smaller level of the cell. However, this it the first time that all the individual mRNA molecules within single cells can be counted.

Dr. Singer’s “single RNA counting” technique has the potential to change some fundamental theories about how genes are regulated. As Dr. Singer explained, “our study using this new technique has already generated enough new ideas to keep students busy for the next 10 years.”

One of the most important findings of this study was that “housekeeping” genes, which all cells need to survive, are not always expressed at a constant level. Variability, however, is restricted to a narrow range that seems to be characteristic for housekeeping genes. Combining single molecule measurement with mathematical modeling allowed the team to precisely determine how variability is controlled. This showed that unlike the findings of previous studies, housekeeping genes are not transcribed by transcriptional bursts but at a fairly constant rate. Bursting expression, however, is found for special classes for genes where higher variability might be an advantage for the cell. The next step is to see if this continuous/non-bursting theory of housekeeping gene control applies also to human cells. The work from Dr. Singer’s group was performed in yeast cells.

Dr. Singer believes the approach of looking at biological processes in natural contexts (rather than in a test tube) at a single cell level reveals details that can advance the field of cancer and other disease research. “Cancer derives from a single cell. So current microarray technologies that are used on a tissue-wide level and are based on “grinding up a tumor” may be a good first step at directing us where to focus, but they may need to be combined with newer techniques that provide the precision to home in on single cells,” Dr. Singer said.

The study, “Single-RNA Counting Reveals Alternative Modes of Gene Expression in Yeast,” by Daniel Zenklusen, Daniel R. Larson and Robert H. Singer appears in the November 16, 2008 online edition of Nature Structural and Molecular Biology.

http://www.aecom.yu.edu/

Link




Just as the emotions it represents are dynamic, the heart’s development requires dynamic shifts in proteins that prompt alternative spicing, a mechanism that allows a given gene to program the cell to make several proteins, said a group of researchers at Baylor College of Medicine in a report that appears online in the journal Proceedings

Full Post: Alternative splicing proteins prompt heart development



A new technique to study genetic changes that can lead to breast cancer could be one step closer. The University of Nottingham has received £15,000 from the charity Breast Cancer Campaign to fill in one of the research gaps identified by the country’s top breast cancer experts in a recent study carried out by the

Full Post: New technique to study the genetics of breast cancer



Whitehead Institute researchers have greatly simplified the creation of so-called induced pluripotent stem (iPS) cells, cutting the number of viruses used in the reprogramming process from four to one. Scientists hope that these embryonic stem-cell-like cells could eventually be used to treat such ailments as Parkinson’s disease and diabetes. The earliest reprogramming efforts relied

Full Post: Researchers simplify creation induced pluripotent stem (iPS) cells



To decipher how cancer develops, Johns Hopkins Kimmel Cancer Center investigators say researchers must take a closer look at the packaging. Specifically, their findings in the December 2, 2008, issue of PLoS Biology point to the three dimensional chromatin packaging around genes formed by tight, rosette-like loops of Polycomb group proteins (PcG). The chromatin packaging,

Full Post: Chromatin packaging helps decipher how cancer develops



A new study shows that atrial fibrillation - the most common form of sustained heart arrhythmia - can be caused in an unexpected way. Researchers report in the December 12th issue of the journal Cell, a Cell Press publication, the first evidence that a rare and particularly severe form of the disease stems from a

Full Post: New cause of atrial fibrillation found