Researchers find brain’s reward and stress signaling circuits are intertwined in complex ways



Weight and appetite experts from around the world met at a conference in Bangkok earlier this year to discuss sex differences in obesity. One line of discussion looked at factors leading to women’s weight gain during menopause, and how it might be avoided. Co-chairs of the conference, Dr Amanda Sainsbury-Salis from Sydney’s Garvan Institute of

Full Post: Weight gain during menopause

Rewarding and stressful signals don’t seem to have much in common.

But researchers studying diseases ranging from drug addiction to anxiety disorders are finding that the brain’s reward and stress signaling circuits are intertwined in complex ways.

Vanderbilt University Medical Center investigators have now discovered a functional link between reward and stress. They found that dopamine - the brain’s chief reward signal - works through corticotrophin-releasing factor (CRF) - the brain’s main stress signal - to increase the activity of a brain region involved in addiction relapse.

The findings, reported Dec. 17 in The Journal of Neuroscience , point to new potential targets for treating alcohol and drug abuse - particularly the problem of relapse.

It is widely accepted that stress is a key signal in prompting alcohol and drug abuse relapse.

“Even after long periods of abstinence, an individual is at risk for relapse, and stress is what’s most frequently cited as initiating that relapse,” said Danny Winder, Ph.D., associate professor of Molecular Physiology & Biophysics and an investigator in the Center for Molecular Neuroscience and the Vanderbilt Kennedy Center.

Studies in animal models had suggested that a brain region called the extended amygdala - an area that extends anatomically between reward and stress centers - and CRF within this region were involved in stress-induced reinstatement (relapse) behavior.

It was also known that alcohol and drugs of abuse increase dopamine levels, not just in the “classical” reward circuitry in the brain, but also in the extended amygdala. It was not clear, however, what dopamine did in this region.

Thomas Kash, Ph.D., a research instructor in Winder’s laboratory, decided to explore dopamine’s actions in the extended amygdala. Using an in vitro brain slice system, he discovered that dopamine increased excitatory glutamate signaling in this brain region. Surprisingly, he found that dopamine required CRF signaling to increase glutamate signaling.

The researchers next looked for this mechanism in animals. William Nobis, an M.D./Ph.D. student, injected mice with cocaine and studied signaling in brain slices. His studies confirmed that in vivo administration of cocaine engaged the dopamine-CRF signaling cascade that the team had discovered in vitro.

“We think that when an individual takes a drug of abuse or alcohol, it causes a rise in dopamine levels in the extended amygdala, and that likely engages this CRF signaling cascade in this region,” Winder said. “That’s now activating portions of this brain structure, which then communicate with the core addiction reward circuitry. We believe the dopamine-CRF signaling may be a key initial step in promoting reinstatement behavior.”

The findings suggest a new target to consider for therapeutics that might address stress-induced reinstatement, Winder said.

“If we can hone in on the mechanisms of this dopamine-CRF interaction, if we can identify the key population of CRF cells, then we could start to think of approaches to silence those cells.”

Such a therapy would be extremely valuable, Winder noted.

“Essentially all of the pharmacotherapies for addiction to date help people get through the withdrawal phase,” he said. “There’s really nothing available to reduce the likelihood of relapse.”

The studies add to a growing number of research findings that point to the interwoven nature of the brain’s reward and stress circuitry. Investigators need to be looking beyond dopamine and the classical reward circuitry - long considered the “common target” of drugs of abuse - to understand mechanisms underlying addiction-related behaviors, Winder said.

“The recruitment of CRF signaling may be another common feature of drugs of abuse.”

http://www.mc.vanderbilt.edu/npa

Link




A Princeton University scientist will present new evidence demonstrating that sugar can be an addictive substance, wielding its power over the brains of lab animals in a manner similar to many drugs of abuse. Professor Bart Hoebel and his team in the Department of Psychology and the Princeton Neuroscience Institute have been studying signs of

Full Post: Sugar is addictive



“Reinstatement of drug-seeking behavior after an extended period of abstinence is the number-one cause of drug-addiction relapse,” said Brookhaven neuroanatomist Stephen Dewey, who led the research team. “This animal study suggests that vigabatrin could potentially prevent human methamphetamine addicts from relapsing.” According to the National Institute on Drug Abuse, methamphetamine is a very addictive stimulant

Full Post: Hope for treating relapse to methamphetamine abuse



For the first time, scientists at Children’s National Medical Center have successfully identified a key developmental program for the amygdala-the part of the limbic system that impacts how the brain creates emotional memories and responses. This knowledge could help scientists to better understand autism and similar disorders in which altered function of this region is

Full Post: Scientists uncover key developmental mechanisms of the amygdala



A little bit of stress goes a long way and can have far-reaching effects. Neuroscientists from the University of Washington have found that a single exposure to uncontrollable stress impairs decision making in rats for several days, making them unable to reliably seek out the larger of two rewards. The research was presented here Tuesday

Full Post: Stress found to impair decision making in rats



The U.S. Food and Drug Administration has approved Tapentadol hydrochloride, an immediate-release oral tablet for the relief of moderate to severe acute pain. Tapentadol is a centrally-acting synthetic analgesic that is available in doses of 50 mg, 75 mg, or 100 mg. “This approval offers health care professionals an additional choice for treating moderate to

Full Post: Tapentadol hydrochloride approved for pain relief