Scientists find 12 new genes with potential as drug targets



Researchers from Purdue and Stony Brook universities have determined the precise atomic-scale structure of the poliovirus attached to key receptor molecules in human host cells and also have taken a vital snapshot of processes leading to infection. The virus binds to a receptor on the cell to form a single complex. “This structure had been

Full Post: Biologists spy close-up view of poliovirus linked to host cell receptor

Scientists have identified 12 new genes that are somewhat strange bedfellows: Some link gallstones and blood cholesterol levels, others link melatonin and sleep patterns to small increases in glucose levels and larger jumps in the risk of diabetes.

While these associations are surprising, all the genes are potential new drug targets and some of them could help explain conditions that have been a mystery. Nature Genetics will publish two papers explaining the findings online Dec 7, in advance of the January print edition.

The 12 new genes relate to cholesterol and glucose levels, but several point to somewhat surprising links between these traits and other conditions, said Goncalo Abecasis, associate professor of biostatistics at the University of Michigan School of Public Health who co-directed the cholesterol study. Cristen Willer, a postdoctoral researcher working with Michael Boehnke, a professor at the U-M SPH, was lead analyst and joint first author of the study along with Sekar Kathiresan of Massachusetts General Hospital and Harvard Medical School.

Cholesterol is a strong predictor of heart disease and in a previous study, Abecasis, Boehnke, Willer and colleagues had shown that genetic variants that raise LDL cholesterol (low density lipoprotein or so-called bad cholesterol) levels also increase the risk of heart disease. The current study describes the most detailed assessment of the genetics of cholesterol to date, examining genetic variants and cholesterol levels in more than 40,000 individuals.

“An important finding is that several of these genes have multiple different changes that can affect cholesterol,” Willer said. For example, in the PCSK9 gene there are common variants that affect about 40 percent of the population and increase LDL by about 3-6 milligrams per deciliter, a fairly small amount. Another variant affects roughly 2 percent of individuals but increases LDL by about 15-30 milligrams per deciliter. Finally, there are extremely rare changes in the same gene that affect fewer than 1 in 1000 people but can increase LDL by well over 100 milligrams per deciliter.

“We think looking at this list of genes in individuals with extremely high cholesterol may clarify a lot of those unexplained cases,” Abecasis said.

In the cholesterol study, U-M scientists and collaborators at more than 10 institutions in the U.S. and Europe located 30 genetic variants associated with cholesterol levels, including 11 new ones. Notably, several of the newly implicated genetic variants were also related to the risk of gallstones and certain rare forms of diabetes.

“Each of these genes is a potentially interesting drug target,” said Abecasis. Statins, a class of cholesterol lowering drugs used to reduce the risk of heart disease, target the HMGCR gene, one of the genes identified in the study. The other genes identified in the study could lead to entirely new and more effective therapies to manage cholesterol levels and reduce the risk of heart disease. In addition, the genetic changes they identify can also help predict whether each individual will develop high LDL or low HDL.

In the paper studying glucose levels, Abecasis and Boehnke collaborated with researchers across the globe to discover genetic changes strongly associated with a small increase in glucose levels in non-diabetic individuals. They also found the same changes increased the risk of developing diabetes by up to 20 percent.

“Observing an increased risk for diabetes was surprising because the changes in glucose levels were well within the normal range,” said Boehnke, who has studied the genetics of diabetes for more than 15 years.

The gene, called the melatonin receptor, helps regulate the circadian clock, among other things. The finding strengthens the association between disrupted sleep patterns and diabetes, Boehnke said.

In the glucose study, scientists looked at the genomes of 36,000 individuals.

http://www.umich.edu

Link




An international research team has identified 11 novel locations in the human genome where common variations appear to influence cholesterol or triglyceride levels, bringing the total number of lipid-associated genes to 30. While major mutations in some of these genes have been known to underlie rare lipid metabolism disorders, it is becoming apparent that common

Full Post: Discovery of 11 new gene sites that influence cholesterol or triglyceride levels



deCODE genetics has announced the discovery by an international consortium of scientists from deCODE and major European and US academic institutions of a single letter variation in the human genome (SNP) that is associated with increased fasting glucose levels and risk of type 2 diabetes (T2D). deCODE will employ its CLIA-registered genotyping laboratory and existing

Full Post: deCODE to integrate new genetic risk factor for type 2 diabetes into its personal genome scan service



Screening for a panel of gene variants associated with the risk for type 2 diabetes can identify adults at risk for the disorder but is not significantly better than assessment based on traditional risk factors such as weight, blood pressure and blood sugar levels. A multi-institutional research team, led by a Massachusetts General Hospital (MGH)

Full Post: Genetic screening no better than traditional risk factors for predicting type 2 diabetes



Abnormalities in genes that repair mistakes in DNA replication may help identify people who are at high risk of developing pancreatic cancer, a research team from The University of Texas M. D. Anderson Cancer Center reports in the Jan. 15 issue of Clinical Cancer Research. Defects in these critical DNA repair genes may act alone

Full Post: Defects in critical DNA repair genes may predict pancreatic cancer risk



A new study uncovers 11 gene variants associated with three blood lipids measured to determine cardiovascular disease risk: low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) and triglycerides. The discovery opens up new opportunities for nutrigenomics researchers looking for links between diet and genetics that will optimize health and lower chronic disease risk. “Practically all genes

Full Post: 11 new genes linked to LDL, HDL cholesterols and triglycerides