Simple brain mechanisms explain arbitrary human visual decisions



An outbreak of dengue fever in Cairns, in far north Queensland, continues to cause alarm as the number now affected has reportedly reached 50 and appears to be rising. Queensland Health says another 12 people are awaiting blood test results and six people have been admitted to hospital. Worse hit suburbs for the mosquito-borne disease

Full Post: Dengue fever outbreak spreading across Cairns

Mark Twain, a skeptic of the idea of free will, argues in his essay “What Is Man?” that humans do not command their minds or the opinions they form.

“You did not form that [opinion],” a speaker identified as “old man” says in the essay. “Your [mental] machinery did it for you-automatically and instantly, without reflection or the need of it.”

Twain’s views get a boost this week from researchers at Washington University School of Medicine in St. Louis and University of Chieti, Italy. In Nature Neuroscience , scientists report that a simple decision-making task does not involve the frontal lobes, where many of the higher aspects of human cognition, including self-awareness, are thought to originate. Instead, the regions that decide are the same brain regions that receive stimuli relevant to the decision and control the body’s response to it.

Other researchers had already demonstrated the same principle in primates. But many still assumed that the more complex human brain would have a more general decision-making module that involved the frontal lobe independently of the neural systems for perception and action.

“It is important to understand how the brain makes decisions under normal conditions to gain insight into diseases like Alzheimer’s disease, traumatic brain injury or stroke in which decision-making is disrupted,” says senior author Maurizio Corbetta, M.D., the Norman J. Stupp Professor of Neurology. “We like to think of our decisions as willful acts, but that may be an illusion. Many decisions may be much more directly and automatically driven by what our brain is sensing.”

For the study, lead author Annalisa Tosoni, a graduate student at the University of Chieti, trained volunteers to perform a task that involved discriminating between an image of a face and an image of a building. Varying degrees of noise obscured the image during the brief time it was visible. Volunteers were asked to indicate which type of image they believed they had seen by either moving their eyes in a particular direction if they had seen a face or pointing their hand in the same direction if they had seen a building.

“This decision is not automatic,” Corbetta says. “It requires both attention to the stimuli and control of the response.”

Researchers took functional magnetic resonance imaging scans of subjects’ brains as they performed the task. The scans were conducted at the Institute of Technology and Advanced Bio-imaging in Chieti as a collaboration between Corbetta; Gaspare Galati, Ph.D., associate professor of psychology at the University of Rome; and Gian Luca Romani, Ph.D., professor of physics at the University of Chieti. To help distinguish between the influx of sensory information and the decision to move the eye or hand, subjects had to wait for 10 seconds after seeing the image before indicating which type it was.

Scientists concentrated on regions of the brain that are responsible for planning actions (eye or hand movements) in the parietal lobe. Activity in these different regions would increase in correspondence with the type of stimulus a subject was being shown (face or building) and the type of response they were planning as a result (eye or hand movement). When the stimulus had less noise and subjects were more confident in their choice, brain activity levels in the appropriate area rose proportionally. In addition, these regions showed activity that related to the choice even when the stimulus was ambiguous.

“This suggests that these regions in the parietal lobe processed all the sensory, decision and motor signals necessary to make and act on the decision,” Tosoni says. “In contrast, no area in the frontal lobe, thought to be involved in decision-making, significantly increased its activity at the time of decision.”

The training period that preceded the scans could have involved the frontal lobes, Corbetta notes. Those areas may have delegated responsibility for the decision to premotor brain regions as the volunteers learned the task. But once the task was learned, the frontal lobes were silent.

“Even for arbitrary and somehow complex visual decisions, it seems to be purely a matter of the amount of sensory information pushing the brain toward one choice or another ” he says.

Tosoni and Corbetta plan next to probe whether more complicated decisions are carried out by this relatively simple sensory-motor mechanism and how decisions are affected by the amount of reward the subject expects when performing simple and complex decisions.

http://www.medicine.wustl.edu/

Link




UCLA scientists have used innovative brain-scan technology developed at UCLA, along with patient-specific information on Alzheimer’s disease risk, to help diagnose brain aging, often before symptoms appear. Published in the January issue of Archives of General Psychiatry, their study may offer a more accurate method for tracking brain aging. Researchers used positron emission tomography (PET),

Full Post: Innovative brain-scan technology helps visualize brain aging before symptoms appear



Men consistently outperform women on spatial tasks, including mental rotation, which is the ability to identify how a 3-D object would appear if rotated in space. Now, a University of Iowa study shows a connection between this sex-linked ability and the structure of the parietal lobe, the brain region that controls this type of skill.

Full Post: Researchers discover reason why men outperform women on spatial tasks



Chimpanzees recognize their pals by using some of the same brain regions that switch on when humans register a familiar face, according to a report published online on December 18th in Current Biology, a Cell Press publication. The study - the first to examine brain activity in chimpanzees after they attempt to match fellow chimps’

Full Post: New insight into the origin of face recognition in humans



Latina women who prefer speaking Spanish are more likely than other ethnic groups to express regret or dissatisfaction with their breast cancer treatment, according to a new study by researchers at the University of Michigan Comprehensive Cancer Center. Despite receiving similar treatment, Latina women were 5.6 times more likely than white women to report high

Full Post: Latina women more likely to regret breast cancer treatment decisions



People with autism-related disorders are less likely to make irrational decisions, and are less influenced by gut instincts, according to research funded by the Wellcome Trust. The study adds to the growing body of research implicating altered emotional processing in autism. Decision-making is a complex process, involving both intuition and analysis: analysis involves computation and

Full Post: People with autism less influenced by gut instincts