Brain’s circuitry survives longer than previously thought in Alzheimer’s



A study comparing breastfed and formula fed infants across time showed that the known beneficial effects of breastfeeding are greater than the potential risks associated with infant exposure to chemicals such as dioxins that may be present in breastmilk, according to a report published in the December issue (Volume 3, Number 4) of Breastfeeding Medicine.

Full Post: Benefits of breastfeeding outweigh risk of exposure to environmental chemicals

Researchers at the Babraham Institute near Cambridge, supported by the Alzheimer’s Research Trust and the Biotechnology and Biological Sciences Research Council (BBSRC), have discovered that the brain’s circuitry survives longer than previously thought in diseases of ageing such as Alzheimer’s disease.

The findings were published today in the journal Brain.

Alzheimer’s disease causes nerve cells in the brain to die, resulting in problems with memory, speech and understanding. Little is known about how the nerve cells die, but this new research has revealed how they first lose the ability to communicate with each other, before deteriorating further.

“We’ve all experienced how useless a computer is without broadband. The same is true for a nerve cell (neuron) in the brain whose wiring (axons and dendrites) has been lost or damaged,” explained Dr Michael Coleman the project’s lead researcher. “Once the routes of communication are permanently down, the neuron will never again contribute to learning and memory, because these ‘wires’ do not re-grow in the human brain.”

But axons and dendrites are much more than inert fibre-optic wires. They are homes to the world’s smallest transport tracks. Every one of our hundred billion nerve cells continuously shuttles hundreds of proteins and intracellular packages out along its axons and dendrites, and back again, during every minute of every day. Without this process, the wires cannot be maintained and the nervous system will cease to function within a few hours.

During healthy ageing this miniature transport system undergoes a steady decline, but the challenges are immense. Axons up a metre long have to survive and function for at least eight or nine decades. Over this period, our homes will need rewiring several times, but in our brains the wires are all original, surviving from childhood. In Alzheimer’s disease, axons swell dramatically, ballooning to 10 or 20 times their normal diameter. These swellings disrupt transport but not, it seems, completely. Enough material gets through the swellings to keep more distant parts of the axon alive for at least several months, and probably for a year or more. This is important because it suggests a successful therapy applied during this early period may not only halt the symptoms, but allow a degree of functional recovery.

“We’ve been able to look at whole nerve cells affected by Alzheimer’s”, said Dr Michael Coleman. “For the first time we have shown that supporting parts of nerve cells are alive, and we can now learn how to intervene to recover connections. This is very important for treatment because in normal adult life, nerve cell connections constantly disappear and reform, but can only do so if the supporting parts of the cell remain. Our results suggest a time window in which damaged connections between brain cells could recover under the right conditions.”

This basic research gives hope over the longer term to the 700,000 people in the UK who live with dementia. Understanding how the brain responds to disease also tells us a lot about how it functions in all of us.

http://www.bbsrc.ac.uk/

Link




In a study that could have significant consequences for neural tissue transplantation strategies, researchers at the Salk Institute for Biological Studies report that inactivating a specific gene in adult neural stem cells makes nerve cells emerging from those precursors form connections in the wrong part of the adult brain. In a paper published in the

Full Post: Newborn neurons in the adult brain can settle in the wrong neighborhood



Swedish research has found a link between fast food and Alzheimer’s disease. The research by scientists at the Karolinska Institutet has revealed that mice fed a diet of junk food for a nine month period developed the abnormal brain tangles which are seen in the preliminary stages of Alzheimer’s disease - they say a

Full Post: Fast food diet a suspect in Alzheimer’s disease



Researchers at Oregon Health & Science University’s School of Dentistry have discovered a novel function of the peptide known as Nerve Growth Factor (NGF) in the development of the trigeminal nerve. The trigeminal nerve provides the signaling pathway for periodontal pain, dental surgical pain, and pain associated with temporomandibular disorder, trigeminal neuralgia, migraine, and other

Full Post: Discovery of mechanism for dental pain



Mice that were fed a diet rich in fat, sugar and cholesterol for nine months developed a preliminary stage of the morbid irregularities that form in the brains of Alzheimer’s patients. The study results, published in a doctoral thesis from the Swedish medical university Karolinska Institutet (KI), give some indications of how this difficult to

Full Post: Diet rich in fat, sugar and cholesterol a potential risk factor for Alzheimer’s disease



Thanks to our ability to learn and to remember, we can perform tasks that other living things can not even dream of. However, we are only just beginning to get the gist of what really goes on in the brain when it learns or forgets something. What we do know is that changes in the

Full Post: Forgotten but not gone - how the brain takes care of things