Discovery of potential new bactericide



A single tumor-suppressing gene is a key to understanding, and perhaps killing, dormant ovarian cancer cells that persist after initial treatment only to reawaken years later, researchers at The University of Texas M. D. Anderson Cancer Center report in the December Journal of Clinical Investigation. The team found that expression of a gene called ARHI

Full Post: Dormant cancer cells rely on cellular autophagy to survive

As bacteria resistant to commonly used antibiotics continue to increase in number, scientists keep searching for new sources of drugs.

In this week’s JBC, one potential new bactericide has been found in the tiny freshwater animal Hydra.

The protein identified by Joachim Grötzinger, Thomas Bosch and colleagues at the University of Kiel, hydramacin-1, is unusual (and also clinically valuable) as it shares virtually no similarity with any other known antibacterial proteins except for two antimicrobials found in another ancient animal, the leech.

Hydramacin proved to be extremely effective though; in a series of laboratory experiments, this protein could kill a wide range of both Gram-positive and Gram-negative bacteria, including clinically-isolated drug-resistant strains like Klebsiella oxytoca (a common cause of nosocomial infections). Hydramacin works by sticking to the bacterial surface, promoting the clumping of nearby bacteria, then disrupting the bacterial membrane.

Grötzinger and his team also determined the 3-D shape of hydramacin-1, which revealed that it most closely resembled a superfamily of proteins found in scorpion venom; within this large group, they propose that hydramacin and the two leech proteins are members of a newly designated family called the macins.

http://www.asbmb.org/

Link




Researchers at the Texas A&M Health Science Center Institute of Biosciences and Technology, and the University of Edinburgh have uncovered how a bacterial pathogen interacts with the blood coagulation protein fibrinogen to cause methicillin-resistant Staphylococcus aureus (MRSA) infections, a finding that could aid in developing therapeutics against the potentially deadly disease. Their work appears November

Full Post: Novel target for therapeutics against Staphylococcus aureus



When bacterial infections cause us to get really sick, the only way to get better is to go to the doctor. With the help of antibiotics, we can start to recover quickly. One such antibiotic is Augmentin which belongs to the penicillin family of drugs. A bacterial infection is different to a viral infection, therefore the

Full Post: Antibiotic Augmentin



Hospital-acquired infections that are resistant to traditional antibiotic treatment have become increasingly common in recent years, confounding health care professionals and killing thousands of Americans. Now, in studies that could lead to new ways to prevent this growing public health danger, a team of University of Cincinnati (UC) researchers is exploring a “zinc zipper” that

Full Post: Zinc key to formation of hospital-acquired infections



Biochemists at North Carolina State University have answered a fundamental question of how important bacterial proteins make life-and-death decisions that allow them to function, a finding that could provide a new target for drugs to disrupt bacterial decision-making processes and related diseases. In a study published this month in the journal Structure, the NC State

Full Post: Scientists present ‘moving’ theory behind bacterial decision-making



An enzyme that lives in Methicillin-resistant Staphylococcus aureus (MRSA) and helps the dangerous bacterium to grow and spread infection through the human body has been visualised for the first time, according to a study out today in Proceedings of the National Academy of Sciences (PNAS). Now, armed with detailed information about the structure of

Full Post: MRSA’s weak point visualised by scientists