Gene named scrawny keeps stem cells healthy



Microvesicles - tiny membrane-covered sacs - released from glioblastoma cells contain molecules that may provide data that can guide treatment of the deadly brain tumor. In their report in the December 2008 Nature Cell Biology, which is receiving early online release, Massachusetts General Hospital (MGH) researchers describe finding tumor-associated RNA and proteins in membrane microvesicles called exosomes

Full Post: Microvesicles released from glioblastoma cells carry information that may guide treatment

Stem cells are the body’s primal cells, retaining the youthful ability to develop into more specialized types of cells over many cycles of cell division.

How do they do it? Scientists at the Carnegie Institution have identified a gene, named scrawny, that appears to be a key factor in keeping a variety of stem cells in their undifferentiated state. Understanding how stem cells maintain their potency has implications both for our knowledge of basic biology and also for medical applications. The results will be published in the January 9, 2009 print edition of Science .

“Our tissues and indeed our very lives depend on the continuous functioning of stem cells,” says Allan C. Spradling, director of the Carnegie Institution’s Department of Embryology. “Yet we know little about the genes and molecular pathways that keep stem cells from turning into regular tissue cells - a process known as differentiation.”

In the study, Spradling, with colleagues Michael Buszczak and Shelley Paterno, determined that the fruit fly gene scrawny (so named because of the appearance of mutant adult flies) modifies a specific chromosomal protein, histone H2B, used by cells to package DNA into chromosomes. By controlling the proteins that wrap the genes, scrawny can silence genes that would otherwise cause a generalized cell to differentiate into a specific type of cell, such as a skin or intestinal cell.

The researchers observed the effects of scrawny on every major type of stem cell found in fruit flies. In the experiments, mutant flies without functioning copies of the scrawny prematurely lost their stem cells in reproductive tissue, skin, and intestinal tissue.

Stem cells function as a repair system for the body. They maintain healthy tissues and organs by producing new cells to replenish dying cells and rebuild damaged tissues. “Losing stem cells represents the cellular equivalent of eating the seed corn,” says Spradling.

While the scrawny gene has so far only been identified in fruit flies, very similar genes that may carry out the same function are known to be present in all multicellular organisms, including humans. The results of this study are an important step forward in stem cell research. “This new understanding of the role played by scrawny may make it easier to expand stem cell populations in culture, and to direct stem cell differentiation in desired directions,” says Spradling.

http://www.ciw.edu/

Link




Cancer Research UK scientists have discovered for the first time that stem cells could be the root cause of bowel cancer, according to a study published in Nature. Scientists at Cancer Research UK’s Beatson Institute for Cancer Research in Glasgow, Cardiff University and the Hubrecht Institute in the Netherlands - isolated stem cells in the

Full Post: Stem cells may ‘ignite’ bowel cancer development



Researchers at the Burnham Institute for Medical Research have shown in both fruit flies and humans that genes involved in embryonic heart development are also integral to adult heart function. The study, led by Rolf Bodmer, Ph.D., was published in Proceedings of National Academy of Sciences. Dr. Bodmer’s lab has discovered that in the fruit

Full Post: Fruit flies provide better understanding of human heart disease



Flies expressing green fluorescent protein (GFP) in their retina cells or other tissues can be tracked by specially modified video cameras, creating a real time computer record of movement and gene expression. The new technique, described in the open access journal BMC Biotechnology, will allow detailed analyses of correlations between behavior, gene expression and aging.

Full Post: New imaging technique allows simultaneous tracking of gene expression and movement



A novel protein marker has been found that identifies rare adult liver stem cells, whose ability to regenerate injured liver tissue has the potential for cell-replacement therapy. For the first time, researchers at the University of Pennsylvania School of Medicine led by Linda Greenbaum, MD, Assistant Professor of Medicine in the Division of Gastroenterology, have

Full Post: Discovery of stem cells with potential to regenerate injured liver tissue



Researchers at the University of Pennsylvania School of Medicine have discovered stem cells in the esophagus of mice that were able to grow into tissue-like structures and when placed into immune-deficient mice were able to form parts of an esophagus lining. The investigators report their findings online this month in the Journal of Clinical Investigation.

Full Post: Newly discovered esophagus stem cells grow into transplantable tissue