How is our left brain is different from our right?



Researchers at Oregon Health & Science University’s School of Dentistry have found that a significant percentage of dental patients with the inflammatory diseases irreversible pulpitis and apical periodontitis also have the Epstein-Barr virus. The Epstein-Barr virus is an important human pathogen found in more than 90 percent of the world population. It is associated with many

Full Post: Epstein-Barr virus linked to inflammatory diseases of the mouth

Since the historical discovery of the speech center in the left cortex in 150 years ago, functional differences between left and right hemisphere have been well known; language is mainly handled by left hemisphere, while spatial recognition is more specialized to the right hemisphere.

However, the structural differences of synapses underlying left-right difference of the brain remained unknown. Japanese research team, led by Prof Ryuichi Shigemoto in National Institute for Physiological Sciences, Dr Yoshiaki Shinohara and his colleagues found that synaptic size and shape in the center of the spatial memory (i.e. hippocampus) were asymmetrical between synapses receiving input from the left and right hemisphere. Hajime Hirase in Brain Science Institute in RIKEN helped this study, and it was done under Japan Science Technorogy Agency support. This report is published in Proceedings of National Academy of Sciences in the week of Nov 17, 2008.

They investigated the electron microscopic structure of synapses in left and right hippocampus, and found synapses made by terminals from the right hippocampus are large, complex in shape, and rich in the GluR1 subunit of AMPA-type glutamate receptors. In contrast, synapses receiving input from the left hippocampus are small and rich in the NR2B subunit of NMDA receptors. That means, both synaptic structure and synaptic molecules differ between synapses with left and right inputs.

“Long-term potentiaon (LTP), that is known as the cellular mechanism of learning and memory, depends on the allocation of glutamate receptors in hippocampus. According to our present finding, synapses receiving right input may be more suitable to initiate LTP. This finding may help understand how our left and right brains work differently”, said Prof Shigemoto.

http://www.nips.ac.jp/

Link




New therapies for some forms of epilepsy may soon be possible, thanks to a discovery made by a team of University of British Columbia and Vancouver Coastal Health Research Institute neuroscience researchers. The researchers found that hemichannels - the same channels the researchers previously found to that cause cell death following a stroke - may

Full Post: Hemichannels - new target to treat epileptic seizures following brain trauma or stroke



In a study that could have significant consequences for neural tissue transplantation strategies, researchers at the Salk Institute for Biological Studies report that inactivating a specific gene in adult neural stem cells makes nerve cells emerging from those precursors form connections in the wrong part of the adult brain. In a paper published in the

Full Post: Newborn neurons in the adult brain can settle in the wrong neighborhood



Shredded extracellular matrix (ECM) is toxic to neurons. Chen et al. reveal a new mechanism for how ECM demolition causes brain damage. The study will appear in the December 29, 2008 issue of The Journal of Cell Biology (www.jcb.org). A stroke or head injury kills large numbers of neurons through a process called excitotoxicity. A

Full Post: Matrix fragments trigger fatal excitement



A new study provides a novel theory for how delusions arise and why they persist. NYU Langone Medical Center researcher Orrin Devinsky, MD, performed an in-depth analysis of patients with certain delusions and brain disorders revealing a consistent pattern of injury to the frontal lobe and right hemisphere of the human brain. The cognitive deficits

Full Post: Delusions associated with consistent pattern of brain injury



Research from the Medical Research Council (MRC) Toxicology Unit at the University of Leicester shows that nitric oxide (NO) can change the computational ability of the brain. This finding has implications for the treatment of neurodegenerative diseases such as Alzheimer’s Disease and our understanding of brain function more generally. The research is led by Professor

Full Post: Nitric oxide can change computational ability of the brain