Measuring nanoparticle behavior in the body using MRI

January is Cervical Cancer Awareness Month and The University of Texas M. D. Anderson Cancer Center shares important information about the cervical cancer screening exam, the Pap test. For many women, their annual Pap test is not something to look forward to; however, this test has the potential to make a huge difference in the

Full Post: Pap test procedure facts

One of the key steps in the development of any drug or imaging agent intended for human use is measurement of the adsorption, metabolism, and excretion of the drug.

Quantifying this collection of pharmacological properties, known as ADME, is a challenging and time-consuming process that is even more difficult when the drug or imaging agent includes a nanoparticle as one of its components. But by taking advantage of the magnetic properties of one kind of nanoparticle, a team of investigators at Washington University in St. Louis has demonstrated that they can measure ADME quickly using magnetic resonance imaging (MRI).

Reporting its work in the journal Magnetic Resonance in Medicine, a team of investigators led by Samuel Wickline, M.D., and Gregory Lanza, M.D., members of the Siteman Cancer Center for Nanotechnology Excellence, describe how it used MRI to measure the ADME properties in rabbits of a nanoparticle designed to bind to a molecule known as avb3, which is found on newly growing blood vessels such as those that surround most solid tumors and around atherosclerotic plaques. For comparison purposes, they also measured ADME for an untargeted but otherwise identical nanoparticle. In both cases, the nanoparticles were loaded with up to 90,000 gadolinium molecules, a number that is easily detected by MRI.

Prior to scanning, the animals had been fed a cholesterol-rich diet designed to spur atherosclerosis. After injecting the nanoparticles into the animals, the investigators scanned the animals using a research MRI instrument every 30 minutes for the next 2.5 hours and then at 8.5, 12.5, and 24 hours. These scans focused on the animals’ aortas to determine ADME properties at the site that these nanoparticles were intended to target. The researchers also took blood samples at the time of imaging for calculating ADME using traditional methods.

Using standard modeling methods, the investigators were able to calculate multicompartmental pharmacokinetic parameters for the two different nanoparticles. Although the data showed that the overall blood levels of the two nanoparticles were nearly identical over the course of the experiment, the imaging results showed clearly that the amount of targeted nanoparticle at the aorta was double that of the untargeted nanoparticle, a result that is impossible to determine using standard ADME techniques. The researchers note that measuring local ADME characteristics with MRI, in addition to determining whole-body averaged results using blood samples, should become increasingly important as more targeted nanoparticles move toward human clinical trials.

This study, which was detailed in the paper “Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging,” was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Investigators from Philips Medical Systems and the University of Missouri Research Reactor also participated in this study. An abstract of this paper is available at the journal’s Web site. View abstract


Working with a nanoparticle designed to target and image glioblastoma, a form of brain cancer, investigators at the University of Washington in Seattle have found that these same nanoparticles inhibit tumor cell invasion, one of the key events that leads to the metastatic spread of cancer. The investigators have also determined how the nanoparticles exert

Full Post: Toxin-nanoparticle combo inhibits brain cancer invasion while imaging tumors

Antibodies that target epidermal growth factor receptor (EGFR) have proven themselves as potent anticancer drugs. Now, a team of investigators led by Shuming Nie, Ph.D., and Lily Yang, Ph.D., both at the Emory University School of Medicine and members of the Emory-Georgia Tech Nanotechnology Center for Personalized and Predictive Oncology, is aiming to capitalize on

Full Post: Artificial antibody delivers nanoparticles to tumors

A research team from the Massachusetts Institute of Technology (MIT)-Harvard Center for Nanotechnology Excellence has custom-designed nanoparticles that can deliver the anticancer drug cisplatin specifically to prostate cancer cells. The nanoparticles are composed of two different polymers and are decorated with a nucleic acid aptamer that binds to the tumor marker prostate-specific membrane antigen.

Full Post: Targeted nanoparticles boost platinum-based anticancer therapy

Angiogenesis, the growth of new blood vessels, plays a critical role in several chronic human diseases, including metastatic cancer. In fact, several new anticancer therapies are designed to starve tumors by shutting down angiogenesis, but the lack of a good assay for quantifying angiogenesis in the body has hampered the development of effective antiangiogenesis therapies.

Full Post: Biodegradable nanoprobe images new blood vessel growth

One of the problems that cancer patients face is that many of the most potent anticancer therapies can be administered only by injection, which means that cancer patients must travel to receive their medication. But thanks to a new type of nanoparticle developed by researchers at the Johns Hopkins University School of Medicine, future cancer

Full Post: Polymer nanoparticle for oral anticancer drug delivery