Protein indoleamine 2,3-dioxygenase points to new pancreatic cancer therapies



Nicotine gum has been in use for over 20 years to help smokers quit abruptly yet close to two-thirds of smokers report that they would prefer to quit gradually. Researchers from the University of Pittsburgh and GlaxoSmithKline Consumer Healthcare have now found that smokers who are trying to quit gradually can also be helped by

Full Post: Nicotine gum effective for gradual smoking reduction and cessation

An enzyme that is overexpressed in pancreatic cancer cells may hold the key to successfully treating the disease with targeted immunotherapy, researchers from Thomas Jefferson University reported at the 2008 Annual Meeting of the Southern Surgical Association.

Previous data show that a protein, indoleamine 2,3-dioxygenase (IDO), is overexpressed in pancreatic ductal adenocarcinomas, according to Jonathan R. Brody, Ph.D., an assistant professor in the Department of Surgery at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and co-director of the Jefferson Center for Pancreas, Biliary and Related Cancers. The center is led by Charles J. Yeo, M.D., Samuel D. Gross Professor and chair of the Department of Surgery, who was also involved with the study.

According to Dr. Brody, IDO is an enzyme that represses the immune system, thus protecting the cancer cells and helping them evade immune detection. The Jefferson researchers and their collaborators from the Lankenau Institute for Medical Research (LIMR) in Wynnewood, Pa., previously reported that the IDO inhibitor D-1-methyl-tryptophan (1-MT), preferentially targets a related protein, IDO2.

“Our data are the first that report expression of the IDO2 protein in malignant pancreatic tissue,” Dr. Brody said. “About 75 percent of the patients in our cohort have an active enzyme based on genetic analysis. This puts forth the concept of genotyping patients for the IDO2 enzyme, to identify patients who may respond to a therapeutic strategy including an IDO inhibitor, a potential novel drug for pancreatic cancer.”

Dr. Brody and his team, which included George Prendergast, Ph.D., and Richard Metz, Ph.D., from LIMR, sequenced IDO2 in 36 resected pancreatic ductal adenocarcinomas to evaluate how many patients harbor an active enzyme in relation to well-known polymorphisms: R235W and Y359STOP. Presumably, only one functional allele needs to be present in order to have an active IDO2 enzyme.

Nineteen percent of the patients were homozygous wild-type, meaning they had two active alleles, and 42 percent of the patients were heterozygous, meaning they had one active allele. Twenty-five percent were homozygous for two inactive IDO2 alleles. The remaining 14 percent were difficult to determine due to limits in sequencing and distinguishing the alleles, but were most likely heterozygous, according to Dr. Brody.

Phase-1 studies of 1-MT, the IDO inhibitor are currently underway.

http://www.jeffersonhospital.org/

Link




UC Davis Cancer Center researchers have discovered a metabolic deficiency in pancreatic cancer cells that can be used to slow the progress of the deadliest of all cancers. Published in the October issue of the International Journal of Cancer , study results indicate that pancreatic cancer cells cannot produce the amino acid arginine, which plays

Full Post: Researchers discover metabolic deficiency in pancreatic cancer



While studying the mechanics of blood clots, researchers at the University of Oklahoma Health Sciences Center discovered a new enzyme that not only affects the blood, but seems to play a primary role in how cancer tumors expand and spread throughout the body. The research appeared in recent issues of the journal Blood and the

Full Post: Discovery of new enzyme in cancer growth



The use of chemotherapy following surgery reduces the risk of death from operable pancreatic cancer by around 30 per cent, says new research published in the British Journal of Cancer.Pancreatic cancer is the tenth most common cancer. Nearly 7,600 people are diagnosed with the disease in the UK each year. But, survival rates remain a

Full Post: Chemo boosts survival rates for pancreatic cancer



Variations in mismatch repair genes can help predict treatment response and prognosis in patients with pancreatic cancer, according to research from The University of Texas M. D. Anderson Cancer Center presented today in advance of the American Society of Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium. In the study, single nucleotide polymorphisms (SNPs) in genes involved

Full Post: Variations in mismatch repair genes predict prognosis in pancreatic cancer



Genetic variations in DNA repair patterns may increase risk of pancreatic cancer by as much as threefold or decrease it by as much as 77 percent, depending on the genes involved, according to a report published in the January 15, 2009, issue of Clinical Cancer Research, a journal of the American Association for Cancer Research.

Full Post: Genetic variations in DNA repair patterns may increase risk of pancreatic cancer