Scientists present ‘moving’ theory behind bacterial decision-making



Just days after the head of Ofsted, Christine Gilbert, promised an overhaul of child protection inspection services in the wake of the death of Baby P, a new study claims that the IT-based procedures used by staff working at the ‘front door’ of local authority children’s services could be putting the very children which they

Full Post: Integrated Children’s System fails the children it was designed to protect

Biochemists at North Carolina State University have answered a fundamental question of how important bacterial proteins make life-and-death decisions that allow them to function, a finding that could provide a new target for drugs to disrupt bacterial decision-making processes and related diseases.

In a study published this month in the journal Structure, the NC State scientists show for the first time that the specific movements of these important bacterial proteins, called transition-state regulators, guide how the proteins bind with DNA and thus control a variety of functions. These rare proteins are like army generals sizing up a battlefield; while they all look the same and have the same rank, their highly specialized “wiggles” allow them to figure out how to bind to different parts of DNA, triggering defense capabilities, for example, or commands to set up camp and chow down.

“For the first time, we’ve shown that proteins with identical shapes have different movements, and these movements allow proteins to select proper DNA targets that lead to tens or hundreds of processes,” says Dr. John Cavanagh, William Neal Reynolds Distinguished Professor of Molecular and Structural Biochemistry at NC State and the corresponding author of the paper. “Motion is really important. If the proteins didn’t move, they wouldn’t be able to bind to DNA and therefore to function.”

Cavanagh and NC State senior biochemistry researcher Dr. Benjamin Bobay, a paper co-author, say that the findings present a new way of thinking about stopping bacteria. If a drug or antibiotic can stymie the motion of the transition-state regulators, the thinking goes, bacteria won’t be able to figure out where to bind to DNA, effectively shutting the bacteria down. Killing a general, therefore, would stop the infantry from taking the battlefield.

Besides the fundamental knowledge about bacterial protein movement and DNA binding, the Structure paper also sheds light on the specific bacterial protein responsible for producing anthrax toxins.

One of the transition-state regulators studied by the NC State biochemists, called AbrB, helps control the production of the three toxins in anthrax: lethal factor, edema factor and protective antigen. Production of all three of these toxins is necessary to make anthrax lethal.

Cavanagh and Bobay say that knowledge of AbrB’s function could make it a likely target for a drug that would knock out its function. That would prevent anthrax from “going lethal.”

“We now know more about the protein that causes you to die from anthrax poisoning and a brand new way of understanding how important proteins bind to targets,” Cavanagh said. “This presents a whole new paradigm for drug design in the arms race against harmful bacteria and disease.”

http://www.ncsu.edu/

Link




A team of researchers from Penn State University and the University of Chicago has uncovered clues that may explain how and why a particular virus, called N4, injects an unusual substance — an RNA polymerase protein — into an E. coli bacterial cell. The results, which are published in the current issue of the journal

Full Post: Researchers study virus with unusual properties



To find its target, all a protein needs to do is give quick squeezes as it moves along the DNA strand, suggests new research from The University of Arizona in Tucson. Scientists had thought DNA-binding proteins primarily used full-body hugs for accurate readings of the information coded in the DNA’s sequence. Even a protein known

Full Post: Just a little squeeze lets proteins assess DNA



Research by a Michigan State University chemist could eventually lead to a quicker and easier way of developing protein-based drugs that are key to treating a number of diseases, including cancer, diabetes and hepatitis. Proteins used in drug manufacture and research often are made within genetically modified Escherichia coli , a one-cell bacteria. That protein

Full Post: New technique may provide quicker and easier way of developing protein-based drugs



As bacteria resistant to commonly used antibiotics continue to increase in number, scientists keep searching for new sources of drugs. In this week’s JBC, one potential new bactericide has been found in the tiny freshwater animal Hydra. The protein identified by Joachim Grötzinger, Thomas Bosch and colleagues at the University of Kiel, hydramacin-1, is unusual

Full Post: Discovery of potential new bactericide



It sounds like a science fiction movie: A killer contagion threatens the Earth, but scientists save the day with a designer drug that forces the virus to mutate itself out of existence. The killer disease? Still a fiction. The drug? It could become a reality thanks to a new study by Rice University bioengineers. The

Full Post: New analysis of the mechanisms that drive evolution in viruses and bacteria